Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
Elife ; 132024 Apr 24.
Artículo en Inglés | MEDLINE | ID: mdl-38655849

RESUMEN

Mutations in the human PURA gene cause the neurodevelopmental PURA syndrome. In contrast to several other monogenetic disorders, almost all reported mutations in this nucleic acid-binding protein result in the full disease penetrance. In this study, we observed that patient mutations across PURA impair its previously reported co-localization with processing bodies. These mutations either destroyed the folding integrity, RNA binding, or dimerization of PURA. We also solved the crystal structures of the N- and C-terminal PUR domains of human PURA and combined them with molecular dynamics simulations and nuclear magnetic resonance measurements. The observed unusually high dynamics and structural promiscuity of PURA indicated that this protein is particularly susceptible to mutations impairing its structural integrity. It offers an explanation why even conservative mutations across PURA result in the full penetrance of symptoms in patients with PURA syndrome.


PURA syndrome is a neurodevelopmental disorder that affects about 650 patients worldwide, resulting in a range of symptoms including neurodevelopmental delays, intellectual disability, muscle weakness, seizures, and eating difficulties. The condition is caused by a mutated gene that codes for a protein called PURA. PURA binds RNA ­ the molecule that carries genetic information so it can be translated into proteins ­ and has roles in regulating the production of new proteins. Contrary to other conditions that result from mutations in a single gene, PURA syndrome patients show 'high penetrance', meaning almost every reported mutation in the gene leads to symptoms. Proske, Janowski et al. wanted to understand the molecular basis for this high penetrance. To find out more, the researchers first examined how patient mutations affected the location of the PURA in the cell, using human cells grown in the laboratory. Normally, PURA travels to P-bodies, which are groupings of RNA and proteins involved in regulating which genes get translated into proteins. The researchers found that in cells carrying PURA syndrome mutations, PURA failed to move adequately to P-bodies. To find out how this 'mislocalization' might happen, Proske, Janowski et al. tested how different mutations affected the three-dimensional folding of PURA. These analyses showed that the mutations impair the protein's folding and thereby disrupt PURA's ability to bind RNA, which may explain why mutant PURA cannot localize correctly. Proske, Janowski et al. describe the molecular abnormalities of PURA underlying this disorder and show how molecular analysis of patient mutations can reveal the mechanisms of a disease at the cell level. The results show that the impact of mutations on the structural integrity of the protein, which affects its ability to bind RNA, are likely key to the symptoms of the syndrome. Additionally, their approach used establishes a way to predict and test mutations that will cause PURA syndrome. This may help to develop diagnostic tools for this condition.


Asunto(s)
Trastornos del Neurodesarrollo , Cuerpos de Procesamiento , Humanos , Trastornos del Neurodesarrollo/metabolismo , Trastornos del Neurodesarrollo/patología , Cuerpos de Procesamiento/metabolismo , Cuerpos de Procesamiento/patología , Gránulos de Estrés/metabolismo , Cristalografía por Rayos X , Dimerización , Dominios Proteicos , Dicroismo Circular , Proteínas Recombinantes , Pliegue de Proteína , Penetrancia , Sustitución de Aminoácidos , Mutación Puntual , Células HeLa
2.
J Biol Chem ; 293(23): 8994-9005, 2018 06 08.
Artículo en Inglés | MEDLINE | ID: mdl-29700109

RESUMEN

Epithelial cell-adhesion molecule (EpCAM) is a transmembrane protein that regulates cell cycle progression and differentiation and is overexpressed in many carcinomas. The EpCAM-induced mitogenic cascade is activated via regulated intramembrane proteolysis (RIP) of EpCAM by ADAM and γ-secretases, generating the signaling-active intracellular domain EpICD. Because of its expression pattern and molecular function, EpCAM is a valuable target in prognostic and therapeutic approaches for various carcinomas. So far, several immunotherapeutic strategies have targeted the extracellular domain of EpCAM. However, targeting the intracellular signaling cascade of EpCAM holds promise for specifically interfering with EpCAM's proliferation-stimulating signaling cascade. Here, using a yellow fluorescence protein-tagged version of the C-terminal fragment of EpCAM, we established a high-content screening (HCS) of a small-molecule compound library (n = 27,280) and characterized validated hits that target EpCAM signaling. In total, 128 potential inhibitors were initially identified, of which one compound with robust inhibitory effects on RIP of EpCAM was analyzed in greater detail. In summary, our study demonstrates that the development of an HCS for small-molecule inhibitors of the EpCAM signaling pathway is feasible. We propose that this approach may also be useful for identifying chemical compounds targeting other disorders involving membrane cleavage-dependent signaling pathways.


Asunto(s)
Molécula de Adhesión Celular Epitelial/antagonistas & inhibidores , Transducción de Señal/efectos de los fármacos , Bibliotecas de Moléculas Pequeñas/farmacología , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Molécula de Adhesión Celular Epitelial/metabolismo , Células HEK293 , Ensayos Analíticos de Alto Rendimiento/métodos , Humanos , Bibliotecas de Moléculas Pequeñas/química , Transcripción Genética/efectos de los fármacos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...